Compactifications of Subvarieties of Tori
نویسنده
چکیده
We study compactifications of subvarieties of algebraic tori defined by imposing a sufficiently fine polyhedral structure on their non-archimedean amoebas. These compactifications have many nice properties, for example any k boundary divisors intersect in codimension k. We consider some examples including M0,n ⊂ M0,n (and more generally log canonical models of complements of hyperplane arrangements) and compact quotients of Grassmannians by a maximal torus. §
منابع مشابه
Adelic Amoebas Disjoint from Open Halfspaces
We show that a conjecture of Einsiedler, Kapranov, and Lind on adelic amoebas of subvarieties of tori and their intersections with open halfspaces of complementary dimension is false for subvarieties of codimension greater than one that have degenerate projections to smaller dimensional tori. We prove a suitably modified version of the conjecture using algebraic methods, functoriality of tropic...
متن کاملThe Birational Geometry of Tropical Compactifications
We study compactifications of subvarieties of algebraic tori using methods from the still developing subject of tropical geometry. Associated to each ``tropical" compactification is a polyhedral object called a tropical fan. Techniques developed by Hacking, Keel, and Tevelev relate the polyhedral geometry of the tropical variety to the algebraic geometry of the compactification. We compare thes...
متن کاملFibers of Tropicalization
We use functoriality of tropicalization and the geometry of projections of subvarieties of tori to show that the fibers of the tropicalization map are dense in the Zariski topology. For subvarieties of tori over fields of generalized power series, points in each tropical fiber are obtained “constructively” using Kedlaya’s transfinite version of Newton’s method.
متن کاملChow Motive of Fulton-macpherson Configuration Spaces and Wonderful Compactifications
The purpose of this article is to study the Chow groups and Chow motives of the so-called wonderful compactifications of an arrangement of subvarieties, in particular the Fulton-MacPherson configuration spaces. All the varieties in the paper are over an algebraically closed field. Let Y be a nonsingular quasi-projective variety. Let S be an arrangement of subvarieties of Y (cf. Definition 2.2)....
متن کاملWonderful Compactifications of Arrangements of Subvarieties
We define the wonderful compactification of an arrangement of subvarieties. Given a complex nonsingular algebraic variety Y and certain collection G of subvarieties of Y , the wonderful compactification YG can be constructed by a sequence of blow-ups of Y along the subvarieties of the arrangement. This generalizes the Fulton-MacPherson configuration spaces and the wonderful models given by De C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005